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Abstract

Spatial cognition empowers animals with remarkably efficient navigation abilities,
largely depending on the scene-level understanding of spatial environments. Re-
cently, it has been found that a neural population in the postrhinal cortex of rat brains
is more strongly tuned to the spatial layout rather than objects in a scene. Inspired
by the representations of spatial layout in local scenes to encode different regions
separately, we proposed LOP-Field that realizes the Layout-Object-Position(LOP)
association to model the hierarchical representations for robotic scene understand-
ing. Powered by foundation models and implicit scene representation, a neural field
is implemented as a scene memory for robots, storing a queryable representation of
scenes with position-wise, object-wise, and layout-wise information. To validate
the built LOP association, the model is tested to infer region information from
3D positions with quantitative metrics, achieving an average accuracy of more
than 88%. It is also shown that the proposed method using region information can
achieve improved object and view localization results with text and RGB input
compared to state-of-the-art localization methods.

1 Introduction

Spatial cognition is a fundamental function that enables humans and animals to achieve long-
term autonomy in their environment. A cognitive map is considered a mental representation of
spatial information about the relative locations and attributes of phenomena in our everyday spatial
environment [1]. Place cells encode the specific locations of rodents in the environment depending
on both scene content and spatial layout [2]. Spatial view cells in the hippocampus become active
when scene contents of the environment are in the animal’s field of view [3]. Various boundary
cells [4, 5, 6, 7] encode the allocentric scene border whatever the scene contents are. A particular
population of neurons in the postrhinal cortex (POR) is more sensitive to the spatial layout of a local
scene than the spatial contents [8]. A theory of geometry representations is proposed to describe
various boundary-related cells and representations of POR in a unified framework. The predicted

Preprint. Under review.



Figure 1: Dividing the scene information into layout, object, and position, and modeling them
explicitly, layout-object-position association enables robots to address relative problems and realize a
more comprehensive spatial cognition.

geometry cells by the theory are able to encode spatial layouts with different geometric structures,
which helps to quickly form a high-level cognitive map representation [9]. The spatial layout,
connected by regions, may play a vital role in spatial cognition, reasoning, and navigation, integrating
with the purpose of the scene and object content semantics.

Inspired by neural representations of spatial layout, scene contents, and locations, spatial informa-
tion can be categorized into (1) layout-level information, which includes the layout, region, and
connectivity of spaces, (2) object-level information, which includes the attributes, appearance, and
positions of various objects, and (3) position-level information, which includes the relative positions,
associations, and modes of interaction among object parts. For example, people can distinguish
different regions within their homes, recognizing the differences between the living room, bedroom,
and kitchen. They can build knowledge and memories about the relationship between target objects
(e.g., bed) and their corresponding regions (e.g., bedroom), and they can distinguish similar objects
within different regions (e.g., a cup in the living room versus a cup in the kitchen). Similarly, if a
robot could understand the relationships between spatial regions as humans do, it would be able
to perform tasks such as spatial reasoning and layout-object associations. Fig. 1 shows that with
layout-object-position association, robots could have enhanced spatial cognition and understanding
capabilities.

In robotics research on spatial scene understanding, current efforts have yielded impressive results in
tasks such as 3D environment reconstruction[10, 11, 12, 13, 14, 15], object detection[16, 17, 18, 19,
20], and object segmentation[21, 22, 23, 24, 25, 26]. However, most of these works have focused
on producing lifelike scene reconstructions and precise geometric and semantic information about
objects, with relatively few studies addressing the modeling and recognition of spatial layouts, such as
scene regions, and the association with spatial contents. The lack of layout information and scalable
association in scenes hinders a robot’s comprehensive understanding and makes it difficult to interpret
related commands.

How to enable robots to learn about spatial regions and association with contents remains a challenging
problem, however, recent advances in large foundation models offer potential solutions. Large
foundation models trained on massive datasets across various scenes, such as vision-language
models(VLMs) like CLIP[27] and large language models(LLMs) like Sentence-BERT[28], are
believed to have the ability to reason with general knowledge and perform zero-shot inference on
multiple tasks. Numerous studies leverage these models to process visual-textual features of scenes,
establishing links between spatial coordinates and these features. For instance, works like CLIP-
Fields[29] and VLMaps[30] establish mappings between spatial positions and object visual-language
features, while GARField[31] proposes hierarchical segmentation and grouping, dividing scenes into
different physical scales. These efforts facilitate linking object features to 3D positions, but most
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existing research does not establish region recognition and lacks the integration of layout-object-
position information.

To effectively integrate spatial layouts, scene objects, and position information, we introduce the
LOP-Field, which realizes the Layout-Object-Position (LOP) association to model the hierarchical
representations for robotic scene understanding. It integrates the spatial layout connected by regions
and object-level semantics with context on 3D positions. It is equipped with the ability to reason
about the relationship between the regions of the scene and its content, thus enhancing the object-level
3D reasoning capabilities of the previous work. Such a neural field can serve as a scene memory
for robots, storing a queryable representation of scenes with hierarchical LOP information. By
inputting RGB-D sequences, the LOP-Field is optimized using a contrast loss between its predicted
features and features from the VLM and LLM, resulting in little need for annotation. To validate the
established LOP relationship, we conducted experiments on several multi-room apartment scenes.
We evaluated the model’s ability to infer region information from 3D positions, providing quantitative
metrics. We also demonstrated improved object and view localization results using object-region
relations with text and RGB inputs. These experiments conclusively prove that LOP-Field effectively
associates information of layout and scene contents from different scales.

Our contributions can be listed as follows:

• Inspired by the recent significant findings in neuroscience, we propose a neural scene
representation named LOP-Field that integrates spatial layouts, scene objects, and 3D
positions for robotic scene understanding.

• By fusing the object information from detected objects and layout region information from
background contexts, LOP-Field builds layout-object-position association in a neural scene
representation to match the vision-language and semantic feature space of large foundation
models with little need for annotation.

• Various experiments are conducted to validate the layout-object-position association. LOP-
Field achieves an accuracy of more than 95% on region inference using 3D positions and we
demonstrate the help of scalable information association in downstream object and image
localization tasks.

2 Related Works

2.1 Spatial Understanding with Layout Information

Understanding the mechanisms of spatial cognition in humans has been a challenging and active
areas of cognitive science, which also serves as an important reference for enabling robots with
scene understanding. During decades of research, scientists have made great efforts to understand
the mechanism of spatial cognition. A mental representation of spatial information is proposed to
describe the relative locations and attributes of phenomena in our everyday spatial environment,
called a cognitive map. Place cells, as the embodiment of the cognitive map, encode the specific
locations of rodents in the environment depending on both scene content and spatial layout [2]. Scene
content of the environment is represented by spatial view cells in the hippocampus, while Various
boundary cells [4, 5, 6, 7] encode the allocentric scene boundary regardless of the scene content.
Recently, Patrick et al.[8] showed that a population code in the POR is more strongly tuned to the
spatial layout than to the content in a scene. The firing activities remain consistent even when the
environmental content and lighting conditions change. This suggests that there are specialized cells
and signaling mechanisms to process layout in the process of scene understanding, which captures the
spatial layout of complex environments to rapidly form a high-level cognitive map representation [9].
We propose that the spatial layout connected by regions, as a high-level abstract semantic feature,
is closely related to the object contents and purposes of the scene, and therefore it can establish
connections with object semantics more easily than other layout information such as area, volume,
and boundary. However, the layout regions of the scene and their association with scene content have
received little attention in current robotics research on scene understanding.
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Figure 2: Pipeline of the target embedding processing and neural implicit rendering during training.
Above is the ground truth generation of layout-object-position vision-language and semantic embed-
dings for weakly-supervising. Below is the neural implicit network mapping 3D positions to target
feature space. A contrastive loss is optimized against each other.

Figure 3: The application examples pipeline of the LOP-Field. The region inference using position
input is shown in (a). The LOP association helped localization of text and image query is shown in
(b).

2.2 Neural Scene Representation

Traditional robotic scene recognition methods, such as multi-view synthesis[32, 33, 34, 35] and
grid-based scene representation[36, 37], aim to reconstruct realistic new views and predict complete
geometry and appearance information. However, approaches based on reprojection losses struggle to
obtain sufficient constraints for optimization, and voxel-based representations face challenges when
scaling to large-scale or high-resolution scenes. To address these issues, NeRF (Neural Radiance
Fields)[38] introduced a novel approach that uses implicit neural fields to represent scene information.
Subsequently, numerous efforts have been made to improve the training and inference speed of neural
rendering fields[39, 40, 41, 42, 43], to adapt them to larger scenes[44, 45, 46], and to explore extended
application scenarios[47, 48, 49]. A popular research direction is to integrate high-dimensional
information, such as semantics, with NeRF to achieve a more comprehensive understanding of
scenes and to address a wider range of downstream tasks[50, 51, 52]. However, training accurate
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NeRF models that incorporate semantic information requires costly manual annotation and presents
challenges in adapting and applying them to different scenes.

2.3 Large Foundation Model Powered Scene Understanding

Recently, several robotics works have utilized large foundation models trained on web-image data
to assist in the understanding of semantic information in scenes. These works have demonstrated
that models trained on web-image data can be used for self-supervised learning. Seal[53] employed
a detection model trained on web-image data to establish the connection between semantics and
3D voxels. Cliport[54] and [55] achieved scene understanding using weakly supervised models
trained on web-image data, leveraging techniques such as CLIP[27]. Huy Ha et al.[56] utilized CLIP
features to annotate 3D points in space. CLIP-Fields[29] and VLMaps[30] directly train an implicit
representation of a scene using visual-linguistic features, establishing correspondence between 3D
spatial points and semantics. However, the semantic feature field learned in the above methods
represents object semantics and does not include scene-level features. In contrast, in our work,
CLIP[27] and Sentence-BERT[28] are used to generate vision-linguistic and semantic features for
objects, spatial regions, and contexts, respectively. In addition to using object semantics generated by
back-projection for 3D points in the scene, we annotate the belonging regions of 3D points based
on spatial layout and regional division of scenes. Such annotations incur minimal cost but establish
connections between the position of 3D points, object semantics, and scene regions.

3 Method

In this section, we first elaborate on the problem formulation of how to associate layout regions,
object semantics, and 3D positions. We provide examples of the usage of LOP association, like
region inference from positions and downstream localization tasks. Next, we present the process of
generating the target features for training. Furthermore, we explain the structure of the employed
implicit scene representation. Lastly, we describe the training procedures.

3.1 Problem Formulation

3.1.1 Foundation-Model-Based Neural Implicit Representation

Our goal is to learn an implicit representation of a scene by establishing associations between 3D
positions and their corresponding layout regions and object features. Therefore, we need to design a
scene-dependent implicit function, denoted as

F : R3 → Rn,

where for any point P in space, F (P ) represents the layout-object-position associated features of that
point. CLIP[27] is introduced as the VLM in this work to encode the object and region information,
integrating the vision and language feature space. Besides, the Sentece-BERT[28] feature is also
introduced in this work. Because intuitively, unlike objects that can have similar appearances within
a certain category, region information often lacks specific visual appearances and is closely related
to semantic representations like the integration purpose of the scene and object semantics. Models
trained on large-scale question-answering datasets can aid in understanding the semantic relationships
between regions and objects. Consequently, Rn stands for embeddings:

E = {(ev, es)}
including vision-language embedding ev and semantic embedding es in our approach. These predicted
implicit representation outputs are targeted to match the features from the pre-trained CLIP[27] C
and Sentence-BERT[28] S separately.

3.1.2 Target Feature Processing

To get the target layout-object-position features, RGB-D image sequences with poses are accepted as
input, what’s more, for pure RGB image sequences, depth point clouds and camera poses estimated
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through methods like COLMAP[57] or simultaneous localization and mapping(SLAM) can also
be used. For each image I , we employ Detic[58] D as the detection model to generate bounding-
box-constrained object patches B = {b1, b2, . . . , bi} and labels L = {l1, l2, . . . , li}, followed by
CLIP[27] and Sentence-BERT[28] to process the vision-language and semantic features. Given the
related region rP and object instance oP of point P , P can be labeled with {C(bP ), S(oP , rP )},
where the text prompt is formed as oP in rP . What’s more, the background appearance is also
considered which we proposed to include context information for region layout. For background
pixel Q out of the object masks, its related region rQ ∈ R = {r1, r2, . . . , rm} is regarded as the text
label and its label can be calculated as {C(Q), S(rQ)}. To obtain region labels of image pixels, we
back-project them to 3D space based on depth and simply consider the top-down view of the 3D
point cloud. The space can be partitioned into different regions using walls as dividers. Consequently,
the target feature space processed by foundation models can be denoted as

F = {(fv, fs)},

where fv is the visual-language feature from CLIP[27] and fs is the semantic feature from Sentence-
BERT[28]. The processing pipeline is shown in Fig. 2.

3.1.3 Layout-Object-Position Association

With the function and feature representation mentioned above, we can infer the region information
and utilize it for various downstream tasks.

Region Inference. Using spatial 3D point Pi as input, assuming a collection of space regions R,
we compute the vision-language features CR = {C(r1), C(r2), . . . , C(rm)} and semantic features
SR = {S(r1), S(r2), . . . , S(rm)}. Then the similarity between EPi

= {(ev, es)} and {CR,SR} is
calculated to find the most likely region to which Pi belongs. The inference process is shown in Fig.
3.

LOP Guided Object Localization. For text input t, such as "cup in the bedroom," most existing
robotic scene representations struggle to locate specific objects of interest (differentiating between
cups in the living room and the bedroom, for example). However, with our proposed LOP-Field
that includes scene region information, we can calculate the similarity between {Ct,St} and the
embeddings EP∗ of the sampled point P ∗ set from the scene. Compared with previous object
localization methods, EP∗ = {(ev, es)} includes contexts between region layout and objects by
considering the object information of detected objects and region information of the background
appearance.

LOP Guided View Localization. Another common robotic application is to localize a captured
image of the scene. Unlike previous methods that only encode the object semantics to find matches,
LOP-Field introduces region features to constrain the prediction. For image input I , the similarity
of {CI ,SI} with EP∗ = {(ev, es)} is calculated. Compared to previous methods that only encode
objects, the text label of object point P is formed as oP in rP (e.g., cup in the kitchen), and the
background appearance with region label is also encoded. These all contribute to a more accurate
localization of a specific image view. The localization of both text query and image query is shown
in Fig. 3.

3.2 Model Architecture

Our proposed LOP-Field involves an implicit mapping function to encode the 3D positions and
separate head processing encodings to match the target feature space. To select an appropriate
implicit function, considering that the target feature space includes object-level local features and
layout-level region feature representation, we employ the Multi-scale Hierarchical Encoding (MHE)
introduced in Instant-NGP[59]. The feature pyramid structure used in MHE allows for considering
structural features ranging from coarse to fine in the spatial domain. Additionally, MHE has a faster
training speed compared to traditional NeRF[38] network structures. For mapping the position
encodings to the target feature space, we employ a unified and simple Multi-Layer Perceptron(MLP)
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Figure 4: The object localization results among state-of-the-art methods and our method with text
input in the form of object in the region. Red stars show the position of the found results of input
texts.

network structure. It includes heads headv for obtaining vision-language features and heads for
semantic features. The model for training is shown in Fig. 2.

3.3 Training

The pipeline of ground truth data generation is described in Section 3.1.2. To fit the multiple
embeddings generated by the implicit representation introduced in Section 3.1.1 to the target feature
space, we design the loss function through a contrastive approach. For the vision-language feature
optimization, the tempered similarity matrix on point P is denoted as

Simv = τevC(P ),

where τ is the temperature term. Using cross-entropy loss, the vision-language loss can be calculated
as

Lv = −e−distP (H(Simv) +H(Simv
T )),

where distP is the distance from P to camera, and H is the cross-entropy function. For the semantic
loss, similarity on object points Po and background points Pb can be calculated as

SimPo
s = τesS(oPo

, rPo
), SimPb

s = τesS(rPb
).

Similarly, semantic loss can be denoted as

Ls = −conf(H(Sims) +H(Sims
T )),

where conf is the prediction confidence from the detection model. The total loss is computed by:

L = Lv + Ls.

In our experiments, an NVIDIA RTX3090 GPU is utilized and the batch size is set to 12544 to
maximize the capability of our VRAM. The MHE has 18 levels of grids and the dimension of each
grid is 8. We train the neural implicit network for 100 epochs with a decayed learning rate of 1e− 4.
Each epoch contains 3e6 samples.

4 Experimental Results

To validate the established layout-object-position relationship of LOP-Field, we designed the follow-
ing experiments related to region information in scenes. Our experimental data consists of multi-room
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Figure 5: The image localization heatmaps among state-of-the-art methods and our method with text
input in the form of object in the region. Red lines and the sector represent the field of view region.

Regions Scene1 Scene2 Scene3 Scene4
Acc. Pre. F1 Acc. Pre. F1 Acc. Pre. F1 Acc. Pre. F1

Living Room 0.948 0.970 0.959 0.870 0.881 0.875 0.778 0.810 0.793 0.902 0.949 0.925
Bedroom 0.943 0.825 0.880 0.925 0.923 0.924 0.687 0.767 0.725 0.920 0.870 0.894
Bathroom 0.466 0.680 0.554 0.903 0.898 0.901 0.875 0.463 0.605 0.797 0.831 0.814

Dining Room - - - 0.961 0.794 0.870 0.774 0.732 0.752 0.933 0.887 0.910
Lobby 0.681 0.941 0.790 0.853 0.951 0.899 0.978 0.510 0.671 0.855 0.698 0.769

Family Room - - - - - - 0.903 0.571 0.700 0.926 0.936 0.931
Kitchen 0.994 0.654 0.789 0.788 0.836 0.811 0.833 0.833 0.833 0.758 0.854 0.803
Office - - - 0.969 0.848 0.905 - - - 0.953 0.883 0.917
Toilet - - - - - - 0.900 0.711 0.795 - - -

Avg. Acc./Samples 0.886 / 169k 0.900 / 185k 0.884 / 111k 0.894 / 112k

Table 1: Region prediction results on the test set of different scenes from the Matterport3D[60]
dataset. Accuracy, precision, and F1 score are used as metrics.

environment from Matterport3D[60] as well as apartment environment[48], which allows us to
demonstrate that our approach can be generalized in diverse scenarios. The data environment is of
single-floor residential buildings which is the common working scenario of household robots widely
studied in this field.

4.1 Region Inference

To demonstrate the built LOP association integrates positions with layout, we designed experiments
that accept 3D positions as input to infer the region information. For quantitative evaluation, we
divided the RGB-D sequences of data into training and testing sets. The LOP-Field is trained
according to Section 3.3 on the training set and tested with data from the test set. As the region
inference task can be treated as a multi-class classification task for each input, the accuracy, precision,
and F1-score are used as metrics. Tab. 4.1 shows the region inference results. It can be seen that in
multi-region environments with different scales and layouts, the average accuracy exceeds 88%. This
experiment demonstrates that the implicit representation of the scene can successfully establish the
connection between 3D points and their corresponding region features.

8



4.2 LOP Guided Localization

Text Input Object Localization: For objects of the same category existing in multiple regions, we
input the textual description of the target object in the form of "object in the region" and infer the
specific location of the target, comparing the results with the predictions of current state-of-the-art
visual-language algorithms. Fig. 4 demonstrates the advancements of LOP-Field in object localization
tasks involving region information, which allows for the localization of specific target objects based
on the description and features of the region, while other methods confuse objects from different
regions. We tested over 160 text queries on 4 scenes of Apartment[48] and Matterport3D[60] dataset.
The accuracy of LOP-Field to localize the specific objects in the target regions exceeds 90%, while
other methods have a significant fluctuation in accuracy. More results can be seen in the appendix.

Image Input View Localization: To validate the help of region information in the image view
localization task. We localize the images from the test set in the trained LOP-Field. The localization
results are shown in Fig. 5 in the form of heatmaps. VLMaps* is a self-implemented version, because
origin VLMaps[30] does not implement the image localization task. To align with CLIP-Field[29]
and our work, the LSeg[61] used in VLMap[30] is replaced by CLIP[27]. The results show that
LOP-Field constrains the localization results to a smaller range in the exact region. We sampled
more than 40 images on each of the 4 scenes from Apartment[48] and Matterport3D[60] dataset. By
drawing the predicted camera view on the top-down view, we estimated the localization precision
and found that almost all views can be ranged into a specific view on the target field of view, while
other methods struggle to get precise results.

5 Conclusion and Limitations

Inspired by neural representations of spatial layout, scene contents, and locations, this paper proposed
the LOP field, an implicit scene representation field that associates layout-object-position information,
powered by foundation models for robotic scene understanding. Our experiments show that with
the help of LOP association, region inference ability and better results in several downstream tasks
are achieved. However, due to time and page constraints, this study explored only a very limited
application of scalable associative information. In addition, the accuracy of the model decreases when
distinguishing between regions with similar functions (such as living room, family room, and TV
room). Furthermore, we currently lack a good method to model the confidence of the predicted results
when presented with images that do not contain representative objects (with sufficient information to
infer the region) or with degraded visual features.

We will investigate how the layout-object-position association information can be effectively used to
perform challenging tasks that previously relied solely on the semantic information of the objects.
Examples of such tasks include complex environment relocalization problems, reasoning about
logical relationships between regions and objects, and efficient navigation between different regions.
We believe that the integration of layout-object-position can significantly enhance a robot’s spatial
perception capabilities and encourage researchers to pay attention to the encoding of scene-specific
information.
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A Appendix / supplemental material

A.1 Scene Partation Example

The scene can be partitioned into different regions using walls as dividers and lines can be aligned to
these walls. This is similar in most scenarios, making the annotation of scene regions a straightforward
task as shown in Fig. A1.

A.2 Vision-language Embeddings Similarity of Region and Objects

To demonstrate that the relationship of the vision-language and semantic embeddings for different
regions is related to our intuition, we compare the similarity in region-region and object-region form
and show the results in Fig. A2. It can be seen that based on general knowledge, cognitively related
regions(e.g., the dining room and kitchen) and object-region pairs(e.g., sink and kitchen) are also
more correlated in the vision-language and semantic feature spaces.

A.3 Ablation Study

To explicitly encode the region information, we apply the LVM to process the background pixels out
of the object bounding box and LLM to encode the region label text. What’s more, for object pixels,
object label text is combined with the region text in the form of ’object in the region’ before being
encoded by LLM.

Source of Region Information. In our very initial version, we assume that objects with region text
include enough information to encode region layouts rather than encoding the background appearance.
The region embeddings completely come from the region text label, and object embeddings are
learned separately. Fig. A3 shows the difference in embedding processing between the initial version
and the current method. Ablation results in Fig. A4 show that context and layout information in
background pixels is necessary for layout-object-position association.

Vision-language and Semantic Embeddings Weight. To ablate the contribution of vision-language
embeddings from CLIP and semantic embeddings from Sentence-BERT in encoding region features,
we compare different weight settings between the v-s embeddings when inferring the regions with 3D
position inputs. Results are shown in Fig. A4. It can be seen that both vision-language embeddings
and semantic embeddings are indispensable, and weight settings with the greatest results are used for
LOP-Field.

A.4 Additional Experiment Results

Additional experiments results of object localization using text query inputs and view localization
using image query inputs.
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Figure A1: Using walls as dividers to associate lines with them, the scene can be divided into various
regions and 3D points can be labeled with related regions easily.

(a)

(b)

Figure A2: The similarity of a set of region embeddings(as shown in a) and object-region embed-
dings(as shown in b). The left graph shows the vision-language embedding similarity and the right
one shows the semantic embedding similarity.
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(a)

(b)

Figure A3: The different source of region information. The initial version which encodes regions
from text description is shown in (a), and the current method which encodes background context is
shown in (b).

Figure A4: Ablation results on the accuracy of region prediction on Matterport3D[60] with 3D posi-
tions input. The w/o BG stands for not encoding background pixels to get region embeddings, and v-s
weight ablates the weight of vision-language and semantic embeddings in the embeddings similarity
contribution. Error bars show the results among samples from different scenes in Matterport3D[60].
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Figure A5: Text query localization on scene 2t7WUuJeko7[60].

Figure A6: Text query localization on scene 17DRP5sb8fy[60].
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Figure A7: Text query localization on scene Apartment[48].

Figure A8: Text query localization on scene HxpKQynjfin[60].
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Figure A9: Image query localization on scene 2t7WUuJeko7[60].

Figure A10: Image query localization on scene 17DRP5sb8fy[60].
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Figure A11: Image query localization on scene HxpKQynjfin[60].

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: This paper claims that with the help of region layout information, robotics can
reach better spatial cognition inspired by neuroscience. The claim is explained in detail in
the abstract and introduction, and the main contributions are listed in the introduction in Sec.
1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of this work lie in the incomplete usage of region layout and
the lack of confidence evaluation for challenging inputs, which is declared in Sec. 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

20



• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results. We use experiments to prove
that considering region layout for robotics leads to better results, and this idea comes from
neuroscience.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The data processing pipeline and method architecture of the proposed LOP-
Field which builds layout-object-position association is shown in Fig. 3.2. The details of
problem formulation, target feature processing, model architecture, and training strategy are
introduced in Sec 3.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use open-sourced dataset in experiments which is declared in Sec. 4. Codes
with model architecture, training, and testing scripts are provided.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The training details and model setups are declared in Sec. 3 and also in codes.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The error bars are available for experiments on the encoding of background
appearance which we claim to include region information and on the usage of vision-
language and semantic embeddings from large foundation models as shown in Fig. A4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computation setup is declared in Sec. 3.3 and it is the same for training
and testing.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This research focuses on improving the spatial cognition ability of robotics,
which is currently in the stage of pre-research of algorithms and has no social impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This research utilizes open-sourced datasets and the model does not have a
risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The using of existing datasets and foundation models is correctly cited. We
obey the license and usage instructions.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide instructions to utilize our codes and models for researching usage.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This research does not include crowdsourcing experiments or human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
It is a robotic research on the existing open-sourced dataset.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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